首页> 外文OA文献 >Application of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images
【2h】

Application of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images

机译:正则化Richardson-Lucy算法在共聚焦显微图像反卷积中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although confocal microscopes have considerably smaller contribution of out-of-focus light than widefield microscopes, the confocal images can still be enhanced mathematically if the optical and data acquisition effects are accounted for. For that, several deconvolution algorithms have been proposed. As a practical solution, maximum-likelihood algorithms with regularization have been used. However, the choice of regularization parameters is often unknown although it has considerable effect on the result of deconvolution process. The aims of this work were: to find good estimates of deconvolution parameters; and to develop an open source software package that would allow testing different deconvolution algorithms and that would be easy to use in practice. Here, Richardson–Lucy algorithm has been implemented together with the total variation regularization in an open source software package IOCBio Microscope. The influence of total variation regularization on deconvolution process is determined by one parameter. We derived a formula to estimate this regularization parameter automatically from the images as the algorithm progresses. To assess the effectiveness of this algorithm, synthetic images were composed on the basis of confocal images of rat cardiomyocytes. From the analysis of deconvolved results, we have determined under which conditions our estimation of total variation regularization parameter gives good results. The estimated total variation regularization parameter can be monitored during deconvolution process and used as a stopping criterion. An inverse relation between the optimal regularization parameter and the peak signal-to-noise ratio of an image is shown. Finally, we demonstrate the use of the developed software by deconvolving images of rat cardiomyocytes with stained mitochondria and sarcolemma obtained by confocal and widefield microscopes.
机译:尽管共聚焦显微镜的散焦比宽视野显微镜小得多,但是如果考虑到光学和数据采集的影响,共聚焦图像仍然可以在数学上得到增强。为此,已经提出了几种去卷积算法。作为一种实际的解决方案,已使用带有正则化的最大似然算法。然而,尽管正则化参数的选择对反卷积处理的结果具有相当大的影响,但通常还是未知数。这项工作的目的是:找到反卷积参数的良好估计;开发一个开源软件包,该软件包将允许测试不同的反卷积算法,并且在实践中易于使用。在这里,Richardson–Lucy算法与总变化正则化一起在开源软件包IO​​CBio Microscope中实现。总变化正则化对反卷积过程的影响由一个参数确定。我们推导了一个公式,可以随着算法的进行从图像中自动估计该正则化参数。为了评估该算法的有效性,在大鼠心肌细胞共聚焦图像的基础上合成了合成图像。通过对反卷积结果的分析,我们确定了在什么条件下我们对总变化正则化参数的估计给出了良好的结果。可以在反卷积过程中监视估计的总变化正则化参数,并将其用作停止标准。示出了最佳正则化参数与图像的峰值信噪比之间的反比关系。最后,我们通过对通过共聚焦和宽视野显微镜获得的染色的线粒体和肌膜的大鼠心肌细胞图像进行解卷积来证明所开发软件的使用。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号